Graduation from the Medical Scientist Training Program (MSTP) is an impressive accomplishment: students must defend a doctoral dissertation and complete a full medical school curriculum, and also end up demonstrating above-average amounts of perseverance and diligence. This year, Shannon Dean, Nicholas Frost, and Jennifer Rathe, three esteemed students from the University of Maryland MSTP are graduating from the program to begin their residencies.

Shannon trained under Dr. Margaret McCarthy in the Neuroscience program, and defended her thesis on “Regulation of cerebellar estradiol synthesis and Purkinje cell morphology by prostaglandins: Implications for neurodevelopmental disease” in 2009. She will be entering a pediatrics residency at the Sinai Hospital in Baltimore, and upon completion will go onto a pediatric neurology program at Johns Hopkins. Jen, who worked under Dr. Stephen Liggett in the Molecular Medicine program, defended her thesis on “Evolutionary Processes Shaping Human Rhinovirus Lineages” in 2010. Jen will be moving to New York to begin her pediatrics residency at the New York Presbyterian Hospital of Columbia University. Nick completed his research in the laboratory of Dr. Thomas Blanpied in the Neuroscience program in October of 2010 and defended his thesis on “Actin Dynamics of Nanometer Domains Within Individual Dendritic Spines” earlier this year. Nick will be moving out to the University of California – San Francisco for a residency in neurology.

Graduation is a bittersweet time of year for our program. Still, we are all extremely proud of our graduates reaching this important milestone in their lives and we appreciate the reminder that the work our students produce is first-rate. For those still in the program, our graduates prove that there is a light at the end of the tunnel, and that we should make the most of our time as trainees since our own graduations will be here before we know it. The MSTP students wish Shannon, Jen, and Nick the best of luck in the coming years, and we look forward to hearing about all of your great work.
The use of interdisciplinary approaches to solve important biomedical questions research increasingly requires collaborative efforts between labs. The importance of these interactions is acknowledged even in the MSTP application to the NIH, which requires discussions of the specific collaborations carried out by trainees. As I wrote this section for our MSTP application and really thought about this issue, I was surprised and pleased by the number of collaborative thesis projects completed by our students. These opportunities are due, in part, to the sincerely collegial attitudes of our faculty. Our students benefit greatly from faculty appreciation of the value of collaborations. When MSTP applicants ask about the extent of collaborations on our campus, I can cite several students who are actively involved in productive collaborations with laboratories, not only on this campus, but with investigators at JHMI, NIH, and HHMI Janelia Farms.

Recently, one of the exciting collaborations has been between Joshua Lieberman (MSIII) and Nick Frost (MSIV, on his way to the University of California San Francisco for Neurology Residency). Joshua’s research focused on the bundle forming pilus (Bfp) in enteropathogenic *E. coli*, a confirmed virulence factor. He was able to collaborate with Nick, a neuroscientist who has used superresolution imaging to view single actin molecules in dendritic spines in living neurons. Working together, the bacteriologist and the neuroscientist were able to image single Bfp molecules in the *E. coli* envelope for the first time with the use of photoactivated localization microscopy (PALM). The image of a novel cellular distribution of Bfp made the cover of the *Journal of Bacteriology*. This type of teamwork and collegial collaboration is a real strength of our MST program. I congratulate both Nick and Joshua on their excellent publication together.

As we look toward the future, I see an increasing number of our students actively involved in patient-oriented research. These exciting and important projects will require productive interactions with both clinical faculty and patients. I know some of you have already embarked on such projects and find aspects of these team efforts challenging. However, the training in collaboration you receive at Maryland should provide the groundwork for thriving in an increasingly interdisciplinary research environment, no matter whether it is in the clinic or in the laboratory.

Terry Rogers, PhD
Program Director
CLINICAL EXPERIENCES DURING THE GRADUATE SCHOOL YEARS

MONICA CHARPENTIER, GS II

One of the great aspects of the University of Maryland MSTP Program is the integrated experiences designed to foster continuity between the clinical and research years. To help students in preparing for their longitudinal clinical rotations, we’ve asked the advanced MSTP students about their experiences and compiled some advice.

The Requirements: All MSTP students are required to complete a longitudinal clinical rotation. This rotation occurs during the graduate school years and is a mentored hands-on clinical experience taking place for at least one semester with at least 50 hours a semester. This longitudinal rotation must also include a didactic clinical experience of at least 16 hours a semester, which can be fulfilled by attending various clinical rounds and conferences. Students must complete a total of 100 hours overall. While these are the minimum requirements, there is great flexibility in the design of the rotation, and, as with much of the MSTP experience, a little forethought can help you get more out of it. Before starting your rotation, email Jane for the official course description and the Mentor Selection Form, as you must have a signed plan before beginning. Make sure to inform your mentor that they will be grading you.

Getting Started: When should you do your longitudinal rotation? Aparna Kishor, GSIV, suggests starting the rotation about a year before you intend to return to the clinic so that you can ensure that you have the time to complete the 100 hours before the potential stress of getting the last-minute work done for completing your PhD thesis.

Selecting a Field or Department: Your first thought might be to select a department directly relevant to your research interests, and that’s a great starting point, especially as your PI may have some contacts with attendings in the hospital. However, don’t feel that you must limit your clinical rotation to your research field! Aparna sought out young faculty members with interests in research and Josh Lieberman, a recent MSIII, selected Dr. Martinez in the Emergency Department because he wanted the opportunity to see many different patients and a wide range of clinical problems.

Selecting a Mentor: Just as careful selection of your PhD mentor can make all the difference in your graduate school experience, selection of a mentor for your longitudinal rotation will significantly affect your experience. To get the most out of it, we suggest talking to previous MSTP students who have completed rotations as well as your former medical school peers - they can help you identify those clinical faculty with a passion for teaching students. Previous issues of The Dual Decree published the faculty-student pairings. We suggest setting up meetings with several faculty members to explain what the rotation entails and determine what the scope of the rotation will be - will you simply be observing or will you be actively participating in patient care? What sort of patient population and procedures will you encounter? Is the mentor or department open to expanding your role, perhaps into a short clinical research project/case study or from interviewing patients to watching and assisting in procedures? Remember that due to malpractice insurance reasons, your rotation must occur on campus, so be sure to take that into account when selecting faculty.

The Experience: Josh, who has recently entered MSIII, says that “it is IMPOSSIBLE to overstate how much my rotation helped prepare me” for starting in the clinic. His top tips include interviewing and examining as many patients as possible and especially practicing presenting patients to attendings, one of the crucial skills needed for third year success. He found the time directly interacting with patients to be most valuable, as the didactic component of attending grand rounds is built into the MSIII curriculum already. Aparna worked with Dr. Cross in the outpatient Inflammatory Bowel Disease clinic and had a lot of interaction with the residents. Because the clinic sees patients with chronic disease, Aparna was able to create a regularly scheduled rotation that enabled her to have continuity with many of the patients.

We hope that the longitudinal clinical rotation will be more than just another requirement, that it will be a connection to the excitement of clinical medicine and a great way to prepare for reentry into MSIII.
REFLECTIONS
JOSHUA LIEBERMAN, MS III

Recently I came across an old and slightly crumpled photo from my first year of medical school. I remember my interview dinner in 2005 at Pazo when I first met two members of the class of 2012, Nick Frost and Shannon Dean, as well as Kavita Ghandi (now a rising MS IV). The lively conversations added to my excitement at the possibility that one day I might actually join this group. Now I find myself nearly finished and can’t help looking back in wonder as I prepare to move on.

I can recognize incarnations of myself over the past years. In the first, I was an enthusiastic, outgoing, and annoying MS I. This was the Josh whose Medscope picture matched Borat for the Freshman Follies Celebrity Look-a-Like. This was the last year of my Jew-fro days.

Early in MS II, I shaved my head and dove into Shaolin and Tai Chi Chuan for personal development and to stay afloat. My test scores were uninspiring but I managed. On the other side of second year I enjoyed a serious month putting everything together for Step 1. It was a lovely routine: wake, Tai Chi Chuan, breakfast, study study study, Shaolin forms, lunch, study study study, dinner, relax. Regular yoga helped, too. This incarnation kept the same level of intensity of physical and meditative practice through GS I. While I took my lab work seriously, it wasn’t until I passed my Qualifying Exam (kids, in my day this was a 2-day affair) that I felt like I knew how to do some stuff in the lab and had attained a new level in functionality.

Mid-way through GS II something switched in my brain and I transformed the effort of martial discipline into laboratory discipline—Lab Fu. I shed “Josh” in exchange for “Joshua” and began the years of grad school where everything failed. Even when things went right, there was always the pressure of the impending clinical years and the push to get out, the lack of funding that plagues every lab, and the desire for that elusive first-author paper. For those around me, those were probably some unpleasant years.

Reentry to the clinical years requires myriad meetings and errands. Trying to fit such things into a final graduate year packed with both experiments and pressure is not pleasant. I sat in assemblies of my new med school class muttering to myself with an odd mixture of arrogance and self-loathing, “Who are these kids? Why are the presentations so fixated on vacations? What is a vacation, anyway? I should be working.” In these moments, I sensed the distance between my almost entirely self-motivated, self-directed day and what my days soon would become. I left those meetings frustrated, and late for my next time point.

I pushed through the end of grad school with the writing of the paper and dissertation (apparently PhD students write dissertations, not theses). Although I was able to take a few days off after my defense, I was in the lab through December and New Year’s Eve, working well into the evening the night before my Medicine Clerkship began. This was a weird in-between position for me. Yes, I was a Doctor now, but I’d had no time to appreciate, reflect upon, or even start to believe the reality of this transition. I just had to hope I had done enough H&Ps and presented enough patients during my longitudinal that I would be able to hang in medical school.

Whatever sense of identity I have built for myself as a young scientist does little for me in the clinic. There are so few people have any clue what I was doing for Those Lost Years that there is an instant solidarity I feel with the rare MD/PhD I encounter. So many clinicians and medical students think of lab research as a summer job of 40-hours (or fewer) per week. Interns younger than I am will talk excitedly and in less detail about topics that were covered by my qualifying exam. I have met a few scientifically-minded folks who think my path is cool and have helped me transition. Others have told me that MSTP training is unnecessary or that it falls short of its own unreasonable expectations. Often, I mentally kick myself for mentioning research.

Walking the halls, I see many of my old classmates as the senior residents. They welcome me back, but we don’t know each other anymore. Like them, I have

(Continued on Page 10)
FAST FORWARD: JOHN OLSON, MD PhD

KRISTI CHAKRABARTI, MS I

Dr. John Olson may be new to Baltimore, but he is no rookie when it comes to balancing the tough act of being a surgeon-scientist. He was appointed Head of the Division of General and Oncologic Surgery at the University of Maryland Medical Center’s Department of Surgery and also the Campbell and Jeanette Pluiege Professor and Vice Chair of the Department of Surgery at the University of Maryland School of Medicine. He chose to come to UMD because “[they] really believe in science here.” He was impressed by the University’s focus on advancing research in the surgery department and throughout the school. Dr. Olson is currently in the process of moving his lab from Duke University, where he spent the past 12 years, and on starting up his surgical practice here at Maryland. Dr. Olson has had an illustrious career thus far and is excited to see it continue to grow in Baltimore. He started at the University of Michigan for his undergraduate studies where he was able to finish his degree in three years. He devoted the next to year to research in a neuroscience laboratory. After that he was set on getting a PhD when his undergraduate thesis mentor gave him a little perspective and advised him to go the MD/PhD route. Dr. Olson then moved back to his home state to attend the University of Florida for his MD/PhD where he completed his dissertation research in the department of Pharmacology and Experimental Therapeutics on the role of the renin-angiotensin system in astrocytes. When the time came to select a residency, Dr. Olson decided to pursue surgery because he was inspired by the surgical passion for “moving knowledge forward” embodied by another one of his mentors. He went to Washington University in St. Louis, which he specifically picked because of their “science focus.” He advises any MSTP student interested in going into surgery to have a similar mindset when choosing a residency program. “You want to be in an environment of learning. And one that values what you do,” he says. Dr. Olson was lucky enough to be able to devote two years of his six year residency completely to research so he could do a post-doc. He doesn’t believe his two year hiatus from practice was at all detrimental to his surgical skill because his training was so extensive. After residency, he went to Memorial Sloan Kettering for his fellowship. There, Dr. Olson did clinical research in order to finish his fellowship in two years and allow himself enough time to establish his own lab at Duke University. He advises students to ultimately pick an institution that has a commitment to science and one that is growing by actively recruiting new surgeon-scientists.

As a surgeon-scientist, Dr. Olson absolutely loves what he does. “I can’t believe people pay me to do this,” he says, with a huge smile on his face. He especially likes how he is able to “tackle questions that his patients led [him] to.” His research facility allows him to take resected tumor samples from patients into the lab to for microarray studies and candidate-gene mapping, along with other molecular biology studies. Recently, he was involved in a national Phase III clinical trial where it was found that administering aromatase inhibitors prior to surgery allowed women to have less aggressive surgery for their breast cancer.

Being a successful surgeon and scientist is no easy task, but Dr. Olson is able to keep a good balance. He is able to tackle his clinical and research responsibilities because he is focused. He spends one to two days a week doing endocrine and breast surgery, specifically for thyroid, parathyroid, and breast cancer patients. He also blocks off time exclusively for research so he can have time to effectively run his lab and mentor students. On a daily basis he keeps up with both jobs by leading lab meetings, attending rounds, and writing grants between cases. When not working, Dr. Olson spends time with his wife and two kids and also enjoys running, swimming, and golfing, all of which he is able to make time for (except maybe the golf – he wishes he could play more).

Looking ahead in his career, Dr. Olson wants to spend his time mentoring students. “I spent a long time making myself successful. Now I want to make other people successful.” His personal keys to success have been hard work, focus, perseverance, and a sense of humor. His biggest piece of advice to current MD/PhD students is “don’t be too big of a hurry. Enjoy the trip,” but also reminds us to be “purposeful.” He really believes that it’s a great time to be surgeon-scientist. For any MD/PhD student interested in pursuing surgery, Dr. Olson wants to extend a warm welcome, “Come on in. The water is fine.”
As the weather warms to unusually hot marks early this spring, the animals of Baltimore are out and about. Some say owners and their pets strike a similar physical resemblance; some might say they connect on personality and habits. Which owner (see below) would have responded to which pet ad(s)?

LEONIDAS – Also goes by “Leo.” Male Tabby, 1 y.o. Loves to play with Q-tips. Likes lounging on 4-ft cat tower. Favorite game is Fetch.

SCHRÖDINGER – Tabby, 2 y.o. Plays with catnip-stuffed mouse and Martin Flajnik’s laser pointer. Hides under the bed. Grooves to Queen’s Don’t Stop Me Now.

STINKY – Mixed Ginger, 5 y.o. Likes playing with wires of every kind, belly rubs, riding on people’s shoulders, sitting in boxes & watching trashy TV. Has 4 teeth; may be mildly retarded.

NESSA – Mixed Tabby, 3 y.o. Likes sleeping like a human, planning the destruction of mankind, alarm-clocking at 5AM, catching flies, reading Time magazine and JAMA.

OLLIE – Siberian, 2.5 y.o. Loves to sit on laps + to play with ‘Da Bird on a Stick toy.

MINA – Siberian mix, 6 y.o. Loves to get rubbed on her head and rest her paw on humans.

2-for-1 SPECIAL!!!: BOOMER & PEANUT – Mini Dachshunds, 2.5 y.o. & 6 mos. We enjoy snuggling, going on walks to the Harbor, and causing mischief! We LOVE the sound of popcorn popper. Popcorn is our favorite food!

ROXY – sheltie, 10 y.o. – I LOVE CHASING CARS.

RAJA – rescued shelter Pomeranian, possibly 6 y.o. Drools for bacon & cheese. Loves playing with his Angry Bird toy.

HENRY – Lab + Pitbull, almost 2 y.o. Likes to people-watch out the window. Has a rowdy edge. Likes napping in people-beds.
According to the MSTP homepage, the goal of the MD/PhD program is “to provide outstanding aspiring physician scientists with broad biomedical training.” One of the many ways this is provided here at Maryland is through the extracurricular courses during Medical and Graduate School. The Molecules to Medicine course is the bridge to research for MSTP students in medical school, while the Clinical Case Studies course keeps MSTP students in graduate school in a clinical mindset.

The Molecules to Medicine (M2M) course is designed for first- and second-year MSTP students to stay connected to the world of research. In its current format, these fortnightly meetings are made up of journal club meetings and physician scientist sessions. For a journal club meeting, two students work with a professor to present two papers on a particularly high-impact topic. The papers, which are chosen by the professor, usually include Nobel prize-winning work and a current paper that builds from that discovery. The physician scientist session allows a current physician involved in research at the University of Maryland to speak to the students about their career track, clinical/research schedule, and their research topics. The course delivers a combination of presenting research, critiquing studies, and learning about the pursuits of other physician scientists.

The M2M students agreed that the course kept them in a research mindset during the first and second year of medical school. In general, they really enjoyed being introduced to an uncommonly wide variety of research topics. There were other benefits as well. For instance, many students thought the presentation preparation and practice were the most useful experiences of the course, and, since students selected their topic, the presentations were not so much of a burden. Also, the course allowed for personal contact with some of the best research advisors at the University of Maryland. In all, the course gives a good opportunity to delve deep into a single topic and think critically, which can be foreign territory during the preclinical years of medical school.

The Clinical Case Studies (CCS) course is the Graduate School equivalent of M2M. It is a chance for second- and third-year graduate students to examine clinical cases with a physician. Each student pairs up with a physician in a different medical specialty and presents a case of their choice to the group. The group can then discuss the case and the critical thinking process that goes into the diagnosis. The physician facilitator is a valuable resource in the discussion, since they have experience with the chosen case or similar situations.

The CCS students thought the course was a great opportunity to prepare for their clinical years by learning from current physicians. Some of the students thought the course was a nice clinical review, while others viewed it as a scary reminder of how much information they will need to relearn before going back to the clinic. Nearly everyone agreed that it was an interesting examination of the diagnostic method that goes into a clinical evaluation. Oftentimes, the sessions went over their allotted time due to the rich discussions. The students really enjoyed these discussions, which became one of the most interesting aspects of the course. Patrick Kearns (GSIII) summed it up by saying, “The clinical case studies are a great way to keep in touch with Medicine during our time in the research lab. They spark my interest in Medicine and get me excited about going back into the clinic.”

The content and structure of the courses is always under review in the hopes of improving them. Even as they stand, however, the M2M and CCS courses have proven to be an effective way to integrate medical and research training. Despite other demands on their time, student become accustomed to being fluent in both fields simultaneously, which, of course, is the overarching goal of the Medical Scientist Training Program.
Requirements for MSTP Students:

This table attempts to lay out the requirements and obligations of each graduate program that has a history of training presentations, non-laboratory obligations, and the format of the thesis proposal. For the most part, there are only and Toxicology are also available. However, due to their lack of training history, participation in these three programs

<table>
<thead>
<tr>
<th>Program</th>
<th>General Comments</th>
<th>Required Courses</th>
<th>Recommended Timing of Qualifying Exam</th>
<th>Qualifying Exam Format</th>
<th>Thesis Proposal Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biochemistry and Molecular Biology</td>
<td>Joint between UMB and UMBC</td>
<td>One year of coursework including some requirements and some electives. One elective must be completed at UMBC.</td>
<td>No more than 6 months after completion of coursework</td>
<td>Written research proposal in grant format followed by oral examination consisting of defense of proposal and comprehensive examination questions</td>
<td>N/A</td>
</tr>
<tr>
<td>Epidemiology and Human Genetics</td>
<td>Three tracks: Epidemiology, Molecular Epidemiology, Human Genetics and Genomic Medicine. Completion generally takes 3-4 years although there are 2 years of courses</td>
<td>Two years of coursework that vary by track</td>
<td>Midway through second year</td>
<td>Two four-hour written examinations and a practical data analysis project</td>
<td>10 page general research plan submitted within six months of qualifying exam. Separate written proposal and oral proposal defense.</td>
</tr>
<tr>
<td>Molecular Medicine</td>
<td>Three tracks: Molecular Genetics, Genomics & Bioinformatics, Molecular Physiology and Pharmacology, Cancer Biology. Most faculty on campus are part of this program.</td>
<td>One year of track-specific coursework and electives</td>
<td>Before the end of the first year in the program</td>
<td>Written NIH-style research proposal and an oral examination. Qualifying examination committee is different from Thesis committee</td>
<td>NIH grant style proposal with a public seminar. This should be done a year after passing qualifiers (when you have been “admitted to candidacy”)</td>
</tr>
<tr>
<td>Molecular Microbiology & Immunology</td>
<td>Students begin with an “Advisory Committee” which is phased out as you develop your thesis committee. However, the advisory committee will sign off on first year course selection.</td>
<td>One year of coursework including both electives and requirements</td>
<td>June/July of your first year</td>
<td>2-3 hour oral examination on the broad field of the thesis project and basic cell biology. The members of the panel of examiners is determined by the field.</td>
<td>NIH grant style proposal with an oral exam 2 weeks after submission. This must take place a year and a half after admission to candidacy.</td>
</tr>
<tr>
<td>Neuroscience</td>
<td></td>
<td>One year of coursework including both electives and requirements</td>
<td>June of your first year of graduate school</td>
<td>72 hours to complete a written response to a set question. Oral defense following approval of written exam.</td>
<td></td>
</tr>
</tbody>
</table>

The Dual Decree - Volume III, Issue 3 - Spring 2012 - Page 8
A SUMMARY OF THE GPILS PROGRAMS

MSTP students. Aside from the area of concentration, major differences between programs include the number of public minor differences in the timelines of each program. Graduate programs in Gerontology, Physical Rehabilitation Science, will be decided on a case-by-case basis.

<table>
<thead>
<tr>
<th>Thesis Requirements</th>
<th>Other Requirements</th>
<th>Program Director</th>
<th>Program Coordinator</th>
<th>Current MSTP Students</th>
</tr>
</thead>
<tbody>
<tr>
<td>Public seminar followed by private Q&A by committee.</td>
<td>Two rotations within the program. Two semesters of required seminar attendance. Annual meeting with advisory committee.</td>
<td>Michael Summers (UMBC), Gerald Wilson (UMB)</td>
<td>Foyeke Daramola</td>
<td>Melissa Vyfhuis, Paz Lunesford</td>
</tr>
<tr>
<td>Public seminar followed by private Q&A by committee.</td>
<td>Two rotations within the program. Required attendance at department seminars and weekly journal club.</td>
<td>Laura Hungerford (Program Director), Mona Baumgarten (Epidemiology track leader), Shannon Takala Harrison (Molecular Epi Track Leader), Braxton Mitchell and Toni Pollin (HGGM track Co-leaders)</td>
<td>Danielle Fitzpatrick</td>
<td>Maya Matheny, Aaron Hess, Kavita Gandhi</td>
</tr>
<tr>
<td>Public seminar followed by private Q&A by committee.</td>
<td>Two graded oral presentations (probably from Proposal Defense and seminar series), Attendance to the weekly Molecular Medicine Seminar Series, Meet with thesis committee every 6 months, 2 rotations with faculty within the program</td>
<td>Toni Antalis (Program Director), Scott Devine (MGGB track leader), Terez Shea-Donohue (MPP track leader), Jeff Winkles (CB track leader)</td>
<td>Sharron Graves</td>
<td>Adam Fisch, Aparna Kishor, Monica Charpentier, Julie Craig, Jen Rathe</td>
</tr>
<tr>
<td>Public seminar followed by private Q&A by committee.</td>
<td>Presentation to department, journal club participation, program seminar, 1st author paper accepted before setting a Defense date</td>
<td>Nicholas Carbonetti</td>
<td>June Green</td>
<td>Patrick Kerns, Jess Shiu, Teresa Hsi, Nicolas Dorsey, Kyle Wilson, Joshua Lieberman, Latey Jones</td>
</tr>
<tr>
<td>Public seminar followed by private Q&A by committee.</td>
<td>Two meetings with thesis committee per year, two Neuroscience Journal Club presentations</td>
<td>Michael Shipley</td>
<td>Jennifer Aumiller</td>
<td>Peter Li, Mark Kvarta, Heather Weid, Nick Frost</td>
</tr>
</tbody>
</table>
COUNCIL UPDATES

Council-sponsored happy hours will start up again in the Fall semester. Let us know about area bars worth visiting!

MSTP Rock climbing on June 16th and Earth Treks in Columbia, MD. Check your email or talk to one of us for last-minute sign-up.

The Council is in the process of putting together a trip to Boordy Vineyards at the beginning of the summer so keep your eyes open. We also want to plan other events over the summer so if you have requests or ideas, send us an email!

PUBLICATIONS & ABSTRACTS

PROGRAM ANNOUNCEMENTS

Congratulations!

• Latey Jones married E. Vonric Bradford over Spring Break 2012!
• Adam Fisch is engaged to Jessica Fernandes
• Nick Frost and Wendy Hart are married!
• PJ Luncsford and Sreenath Vellanki (SOM ’11) are engaged to be married on Memorial Day!

As for that picture from the UMSOM White Coat Ceremony of 2006, not a lot has changed. Dr. Rogers is still the head of the program and appears no worse for the wear. Nicolas and Aparna are older on the inside, but no less brilliant or lovely. Decision to shave aside, I’m still more or less a kid, and the better for it. But the picture is incomplete. “Where is Julie Brownley Craig?” the astute readership asks. She and her family decided that it just wasn’t worth getting Norwalk virus and tactically avoided the buffet of sandwiches and treats. To tell you the truth, she made the right choice: the food was nice but did not balance the experience of the next day’s soccer game.

I have no idea what comes next. My most recent fantasy is to become the Indiana Jones of microbiology in search of emerging infections with a structural biology lab at home. Sarah Boudova and her screening of Contagion get more than a little credit for that. Despite all the de-differentiation I’ve been through by initiating MS III, I at least know where I’ve been and that I am with a crowd that is out to revolutionize science and medicine. I also know I’m not the same as I was in 2006. So like the book says: “Think. Fast. Wait.” I trust the rest will come.

REFLECTIONS, from Page 4

survived a hardening process: both the PhD and Residency build resilience, endurance, maturity, discipline, and focus. These traits are invaluable and are helping me weather the transition to MS III. Another boon, this one surprising, my clinical knowledge and skills really are not lagging behind my classmates. So I try not to complain: I’m a Doctor, after all.

I have no idea what comes next. My most recent fantasy is to become the Indiana Jones of microbiology in search of emerging infections with a structural biology lab at home. Sarah Boudova and her screening of Contagion get more than a little credit for that. Despite all the de-differentiation I’ve been through by initiating MS III, I at least know where I’ve been and that I am with a crowd that is out to revolutionize science and medicine. I also know I’m not the same as I was in 2006. So like the book says: “Think. Fast. Wait.” I trust the rest will come.

As for that picture from the UMSOM White Coat Ceremony of 2006, not a lot has changed. Dr. Rogers is still the head of the program and appears no worse for the wear. Nicolas and Aparna are older on the inside, but no less brilliant or lovely. Decision to shave aside, I’m still more or less a kid, and the better for it. But the picture is incomplete. “Where is Julie Brownley Craig?” the astute readership asks. She and her family decided that it just wasn’t worth getting Norwalk virus and tactically avoided the buffet of sandwiches and treats. To tell you the truth, she made the right choice: the food was nice but did not balance the experience of the next day’s soccer game.